T(II)-Mathematics-H-3(Mod.-V)

2021

MATHEMATICS — HONOURS

Third Paper

(Module – V)

Full Marks : 50

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group – A

[Modern Algebra – II]

(Marks : 15)

Answer any three questions.

- 1. (a) Let (G, *) be a finite cyclic group of order n. Then prove that for every positive divisor d of n there exists a unique subgroup of G of order d.
 - (b) Prove or disprove : If G is a commutative group of order 6 and has an element of order 3, then G is cyclic. 3+2
- 2. (a) Prove that the order of each subgroup of a finite group is a divisor of the order of the group.
 - (b) Find the images of the elements 3 and 4 if $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & & 3 \end{pmatrix}$ is an odd permutation. 3+2
- 3. (a) Show that the ring of matrices of the form $\begin{pmatrix} a & b \\ 2b & a \end{pmatrix}$ contains no divisor of zero if $a, b \in \mathbb{Q}$ but contains divisor of zero if $a, b \in \mathbb{R}$.
 - (b) Show that the field of rational numbers has no proper sub-field.
- **4.** (a) State Lagrange's theorem and establish that the converse of Lagrange's theorem is not true.
 - (b) In the symmetric group S_5 , solve the equation $x(1 \ 2 \ 3) = (2 \ 4 \ 3)$. 3+2
- 5. Prove that a finite integral domain is a field.

Please Turn Over

5

3+2

Group – B

(2)

[Linear Programming and Game Theory]

(Marks : 35)

Answer any five questions.

- 6. (a) A manufacturer produces two types of commodities X and Y. Production cost of one unit of commodities X and Y are Rs. 1,000 and Rs. 1,500, respectively, and times needed are 6 hours and 8 hours, respectively. He can work 8 hours per day and his capital is Rs. 20,000. The profit on one unit of X and Y are Rs. 100 and Rs. 150, respectively. The problem is to determine the number of units of X and Y to be produced by the manufacturer per week in order maximize his profit per week. Formulate the problem as an L.P.P.
 - (b) Solve the following L.P.P. graphically :

Maximize
$$z = 2x_1 + 4x_2$$

subject to $x_1 + 2x_2 \le 5$,
 $x_1 + x_2 \le 4$,
 $x_1, x_2 \ge 0$.
4+3

- 7. (a) Define a convex set and an extreme point of a convex set. Give example of a convex set which has no extreme point.
 - (b) Show that $x_1 = 2$, $x_2 = 1$, $x_3 = 3$ is a feasible solution of the system of equations

$$4x_1 + 2x_2 - 3x_3 = 1$$

$$6x_1 + 4x_2 - 5x_3 = 1$$

Reduce it to a basic feasible solution of the system. [(1+1)+1]+4

8. Find the optimal solution of the following L.P.P. by solving its dual :

Maximize
$$z = 3x_1 + 4x_2$$

subject to $x_1 + x_2 \le 10$,
 $2x_1 + 3x_2 \le 18$,
 $x_1 \le 8$,
 $x_2 \le 6$,
 $x_1, x_2 \ge 0$.

9. Solve the following L.P.P. by Big-M method :

Maximize
$$z = 2x_1 - 3x_2$$

subject to $-x_1 + x_2 \ge -2$,
 $5x_1 + 4x_2 \le 46$,
 $7x_1 + 2x_2 \ge 32$,
 $x_1, x_2 \ge 0$.

7

7

T(II)-Mathematics-H-3(Mod.-V)

10. Find the optimal solution of the following transportation problem and find the Minimum cost of transportation :

11. Solve the following travelling salesman problem :

	A	В	С	D	Ε
A	8	2	4	7	1
В	5	∞	2	8	2
С	7	6	∞	4	6
D	10	3	5	∞	4
Ε	1	2	2	8	∞

- 12. Consider the L.P.P. : Maximize $z = c^T x$ subject to Ax = b, $x \ge 0$. If, for any basic feasible solution x_B of the L.P.P., $z_j c_j \ge 0$ for every column a_j of A, then prove that x_B is an optimal solution. [Symbols have their usual meanings]
- 13. (a) If $(a_{ij})_{m \times n}$ be the pay-off matrix of a two-person zero sum game, prove that

 $\min_{j} \max_{i} a_{ij} \ge \max_{i} \min_{j} a_{ij}.$

(b) In a rectangular game, the pay-off matrix is given by

10	5	5	20	4
11	15	10	17	25
7	12	8	9	8
5	13	9	10	5

State, giving reasons, whether the players will use pure or mixed strategies. What is the value of the game? 3+4

- 14. (a) Prove that, if we add a fixed number P to each element of a pay-off matrix then the optimal strategies remain unchanged while the value of the game is increased by P.
 - (b) Using mixed strategies, find the optimal strategies and the value of the game for the following

game, whose pay-off matrix is given by $\begin{bmatrix} 6 & -4 \\ -1 & 2 \end{bmatrix}$. 3+4

(3)

7